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ABSTRACT

A spectral-domain approach is introduced for the anal-
ysis of a general class of open dielectric waveguides. This
technique reduces the dimensionality of the space-domain in-
tegral equation by use of higher-order boundary conditions.
A simple rectangular slab guide is treated as an example and
the results are compared to other methods. For the numeri-
cal solution of the spectral-domain equations, the method
of moments is employed with a Hermite-Gaussian entire-
domain basis. It will be seen that only a few basis functions
are sufficient to obtain satisfatory results.

I. Introduction

Dielectric structures can play a central role in the submilli-
meter-wave integrated circuit technology. Development of
complex dielectric components relies upon the availability
of accurate numerical techniques with high computational
efficiency and great versatility. During the past decade, sev-
eral approximate {1-2] and numerical techniques [3-6] have
been proposed for the analysis of two-dimensional dielectric
waveguides. The approximate methods developed for optical
frequencies become less accurate for submillimeter-wave ap-
plications, while the existing numerical methods encounter
severe computational problems in view of time and memory
requirements as the complexity of the structure increases.
Most of these methods perform a fine discretization of the
cross section of the waveguide which results in too many
unknowns and introduces numerical instabilities. Such limi-
tations make it practically impossible to extend these tech-
niques to three-dimensional structures.

Recently, higher-order boundary conditions have been
utilized to formulate planar integral equations for shielded
dielectric structures [7]. To this end, an equivalent planar
current is defined by averaging the volume polarization cur-
rent, for which a space-domain planar integral equation is
derived. Although this method yields satisfactory results
for shielded structures, its application to open waveguides
is limited to electrically thin layers, for which only the first
few low-order boundary conditions suffice and the inclusion
of higher-order ones does not improve the outcome [8].
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In this paper, we present a novel technique based on
the formulation of a spectral-domain integral equation of re-
duced dimensionality for open dielectric waveguides of ar-
bitrary dimensions, which can easily be extended to three-
dimensional dielectric structures. This technique requires
separability of the Fourier transform of the Green’s func-
tion of the structure with respect to the source and obser-
vation coordinates outside the source region. Two vector
spectral unknowns are introduced in view of the angular
spectrum decomposition of the Green’s function. Then us-
ing the higher-order boundary conditions on the surface of
the dielectric region, coupled integral equations are derived
which relate these uknowns through spectral-domain modi-
fied Green’s functions.

In the following, first the general methodology is de-
veloped and then it is applied to to a rectangular dielec-
tric slab waveguide as an example. The resulting spectral-
domain integral equation is solved using the method of mo-
ments in conjunction with Galerkin’s testing. Due to the
nature of the spectral unknowns, an entire-domain basis con-
sisting of Hermite-Gaussian orthogonal functions is utilized.
Finally, numerical results are disussed and compared with
other methods.

I1. Theory

In this section, we present the spectral-domain approach
for a general class of dielectric waveguides. The geometry
of such a waveguide, shown in Fig.1, consists of a dielec-
tric region of rectangular cross section which rests upon a
planar layered background structure. An equivalent volume
polarization current can be defined as

J'koYo(fr - I)E(‘t»y)a I €T ls a, I Y |S b

Ip(z,y) = 1)
0, elsewhere

where ko and Yj are the free-space propagation constant and
characteristic admittance, respectively, ¢, is the relative per-
mittivity of the dielectric region and E is the electric field
inside this region. The uniformity of the structure along the
x-axis prompts the use of the Fourier transform with respect
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to the spatial variable x. The Fourier transform of the radi-
ated electric field is then given by

~ bz ~
B(ks,y) = [ Gelkoy |9)-Tplket)dy' ()

where Ge(ks,y | ¥') and Jp(k,, y') are the Fourier transforms
of the dyadic Green’s function of the background structure
and the polarization current, respectively.

For a large class of planar, layered substrate structures,
the spectral-domain dyadic Green’s function can be sepa-
rated with respect to y and y’ outside the source region, i.e.,
| y |> b. For the geometries of the type shown in Fig.1, the
Fourier transform of the Green’s function is in the following
form:

g =+ ‘ =+ '
Ge(kz‘, y I y') = @1 (kz,y)e"/ﬂ’ + §2 (kz, y)e—'uy (3)

where v = kZ+k% — k2, k, is the propagation constant of the
waveguide along the z-axis, the + sign indicates y > b, and
the — sign indicates y < —b. At this point, we define two
vector, spectral, planar unknowns, which have the dimen-
sionality of surface currents, by the following line integrals:

Sup (k) = [ T3, (/) @)

In view of (4), equation (2) reduces to the form:
B (k) = |81 (key ) Fua o) + 85 (o) )| (9)
The field inside the dielectric region can then be ex-
panded in a Taylor series about its upper or lower boundaries

in the following way:

I E(k,, +b)
Ay

E(k,,y) = i v Zb)n

n=0

(6)

The higher-order derivatives in (6) can be related to the elec-
tric field and its derivatives just outside the boundaries of the
dielectric region using the higher-order boundary conditions.
In the dyadic form, one can write

B (k,, £b%)

_ 7 fas +
oo = L Bk, %) (7)

where En is a tensor whose elements are functions of &, and
ks. Finally, in view of (1),(6) and (7), (4) reduces to the
following coupled linear equations:

Saa(ke) = [ [Grahs 19-3a() + Ealhe | ©Tia(e)] de
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where G (k, | £) are modified spectral-domain Green’s func-
tions:

K S (1) Ta(r) B . B (6,8) e85 (k. £)
n=0
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Golks | &) = K L(m)Ln. 8] (€,—8) eMi-mPS(k,, £)

n=0

&k &)

with 1 = 1,2, K = jkoYo(e, — 1), I.(m) given by a simple
integral which can be evaluated analytically:

b (b— y)"
In(m) = /_ , el 7 n!y) e"dy

and S(k;,£) = sin[(ks — £)a]/[x (ks — £)]-

It should be noted that due to the rigor of the analysis,
equations (8) yield exact relations between Jg1 and Jgp. In
the case of a structure with infinite extent along the x-axis,
these equations reduce to the exact eigenvalue equations.

Now in order to examine the validity of the general tech-
nique presented above, a simple geometry is considered which
consists of a rectangular dielectric slab waveguide of width
2a and thickness 2b immersed in the free space. In this case,
the Green’s function of the background structure is that of
the free space, while the symmetry of the problem along the
y-axis decouples the two equations for the two planar un-
knowns 331,2' However, both of the two equations have the
same eigenvalues and as a result, only one of them is suffi-
cient for the solution of the eigenvalue problem which is in
the following form:

Sk = [ &k 10 3.6 (10)

Note that in this case, the tensor En, introduced above in
conjunction with the higher-order boundary conditions, re-
duces to the following simple form:

_ 1 0 0
Lo = 722m 0 1/67« 0
0 0 1

and

- Fn jk(l-1/e;) 0
Lomyr =1" 0 Fn 0

0 Jk(1-1/e) Fm

for even and odd orders, respectively, and 42 = k2+k2—¢, k2.
Carrying out the infinite summations using known expan-
sions, closed-form expressions for the modified Green’s func-
tion are obtained. Similar simplifications apply to the more
general problem of Fig.1.



II1. Numerical Results and Discussion

The integral equation (10) is solved numerically by use of
the method of moments in the spectral domain. The choice
of the basis functions is dictated by the inverse Fourier trans-
form of Jg(k,), shown in Fig.2, which corresponds to a uni-
form polarization current over | z |< @, | y |< b, with the typ-
ical values of 2b = 0.3578)¢,a/b = 4, and k, = 1.26k;. Con-
sidering the variation of Js(z) in the space domain, Hermite-
Gaussian functions are chosen as an expansion basis. These
functions are given by

bu(z) = e &) Hn(xio) (1)

where H,(z) are the Hermite polynomials and z¢ is a pa-
rameter. The Hermite-Gaussian functions have the interest-
ing property that their Fourier transforms are also Hermite-
Gaussian of the same order and they form a complete orthog-
onal system for square-integrable functions over (—o0, o0).
Thus, the spectral planar unknowns defined previously can
be approximated by the following sum:

~ N ~
Jsi(kz) = Z ain¢in(ka:);

n=0

t=2,y,2 (12)

It turns out that the optimum value of ¢, which minimizes
the mean-square error for the approximation of Jg(k,), is
a function of a,b ( the bounds of the dielectric region), N
and k,, but it is not sensitive to the functional form of the
polarization current. Therefore, given N and £, one can de-
termine the value of zo from an examination of a polarization
current with uniform distribution over |z |[< a,]y |< b.

In view of (13) and with the use of Galerkin’s testing,
equation (10) reduces to the following matrix equation:

Z I=<mn-an = 0,

n=0

m=0,...,N (13)

where

Kin= [ [ Gk | Fim(ke)bin(€)dkads — cnbmnbi
(14)

with ,j = z,y,2, m,n =0,..., N, §’s being the Kronecker
delta, and ¢, = [ &%, (ks)in(kz)dks. The propagation
constant k, of the waveguide is found by solving the equation
det[K] = 0. ‘

The spectral-domain technique presented above has been
applied to slab waveguides with a variety of parameters.
Figs. 3 and 4 show the variation of the normalized prop-
agation constants for the dominant E% and EY, modes of a
rectangular dielectric slab, with €, = 2.25 and R = a/b =
4, versus the normalized guide thickness defined as B =
4(b/Xo)Ve, — 1, respectively. The numerical results have

1525

been compared with those of Marcatili’s approximate method
[1]. Excellent agreement is observed for large waveguide di-
mensions. However, as the dimensions of the dielectric slab
shrink, Marcatili’s approximation begins to fail as expected,
while this technique yields accurate solutions. The use of
the Hermite-Gaussian functions provides satisfactory results
with only a few basis functions as opposed to other numer-
ical methods which require fine discretization of the guide
cross section. Fig.5 shows the convergence of the eigenvalues
for the dominant modes versus the number of basis func-
tions. Additional results including higher-order modes and
slabs of different dimensions and dielectric constants will be
presented and discussed.

IV. Conclusion

We have developed a general spectral-domain technique
which reduces the dimensionality of the space-domain inte-
gral equation for a large class of open dielectric waveguides.
This technique has the merit of easy extension to three-
dimensional structures. As an example, a simple rectangular
slab guide was considered and the corresponding spectral-
domain modified Green’s function was derived. To solve the
resulting equations, the method of moments has been em-
ployed in the spectral domain using entire-domain Hermite-
Gaussian functions. The results show good agreement with
other methods, and only a few basis functions are adequate
to achieve quick convergence.

Acknowledgement. This work was supported by the Army
Research Office.

References

[1] E.A.J. Marcatili,“Dielectric rectangular waveguide and
directional coupler for integrated optics,” Bell Syst. Tech.
J., vol.48, no.9, pp. 2071-2102, Sept. 1969.

[2] D. Yevick, W. Bardyszewski, B. Hermansson and M.
Glasner,“Beam propagation methods,” in URSI Radio Sci-
ences Meeting, Chicago, July 1992.

[3] S-T Peng and A.A. Oliner,“Guidance and leakage prop-
erties of a class of open dielectric waveguides: Part I-
Mathematical Formulations,” IEEE Trans. Microwave The-
ory Tech., vol. MTT-29, pp. 843-855, Sept. 1981.

[4] E. Schweig and W.B. Bridges, “Computer analysis of di-
electric waveguides: a finite difference method,” IEEF Trans.
Microwave Theory Tech., vol. MTT-32, pp. 531-541, May
1984.

[5] M. Koshiba, K. Hayata and M. Suzuki,“Improved finite-
element formulation in terms of the magnetic field vector
for dielectric waveguides,” IEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 227-233, March 1985.

(6] J.S. Bagby, D.P. Nyquist and B.C. Drachman,“Integral



formulation for analysis of integrated dielectric waveguides,”
IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.
906-915, Oct. 1985.

[7] T.E. van Deventer and P.B. Katehi,“A study of sub-
millimeter wave coupled dielectric waveguides using the GIE
method,” in TEEE MTT-S Dig., 1992, pp. 1115- 1118.

[8] K. Sabetfakhri and P.B. Katehi,“A study of open dielec-
tric waveguide problems using the generalized integral equa-
tion method,” in URSI Radio Sciences Meeting, Chicago,
July 1992.

Fig. 1. Ridge dielectric waveguide.
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Fig. 2. Inverse Fourier transform of j,(k,) corresponding to a uniform
volume polarization current.
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Fig. 3. Normalized propagation constant (k,/ko) for the dominant E3
mode as 2 function of normalized thickness B = 4(b/Xo)V/E — 1.
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Fig. 4. Normalized propagation constant (k,/ko) for the dominant Ej,
mode as a function of normalized thickness B = 4(b/Xs)v/e, — 1.
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Fig. 5. Convergence of normalized propagation constaat vs. the
number of basis functions.



