
Ww-1

A NOVEL TREATMENT OF OPEN DIELECTRIC WAVEGUIDES

Kazem Sabetfakhri* and Linda P.B. Kat ehi

Radiation Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor. MI 48109-2122

ABSTRACT

A spectral-domain approach is introduced for the anal-

ysis of a general class of open dielectric waveguides. This

technique reduces the dimensionality of the space-domain in-

tegral equation by use of higher-order boundary conditions.

A simple rectangular slab guide is treated as an example and

the results are compared to other methods. For the numeri-

cal solution of the spectral-domain equations, the method

of moments is employed with a Hermit e- Gaussian entire-

domain basis. It will be seen that only a few basis functions

are sufficient to obtain satisfactory results.

I. Introduction

Dielectric structures can play a central role in the submilli-

meter-wave integrated circuit technology. Development of

complex dielectric components relies upon the availability

of accurate numerical techniques with high computational

efficiency and great versatility. During the past decade, sev-

eral approximate [1-2] and numerical techniques [3-6] have

been proposed for the analysis of two-dimensional dielectric

waveguides. The approximate methods developed for optical

frequencies become less accurate for submillimeter-wave ap-

plications, while the existing numerical met hods encounter

severe computational problems in view of time and memory

requirements as the complexity of the structure increases.

Most of these methods perform a fine discretization of the

cross section of the waveguide which results in too many

unknowns and introduces numerical instabilities. Such limi-

tations make it practically impossible to extend these tech-

niques to three-dimensional structures.

Recently, higher-order boundary conditions have been

utilized to formulate planar integral equations for shielded

dielectric structures [7]. To this end, an equivalent planar

current is defined by averaging the volume polarization cur-

rent, for which a space-domain planar integral equation is

derived. Although this method yields satisfactory results

for shielded structures, its application to open waveguides

is limited to electrically thin layers, for which only the first

few low-order boundary conditions suffice and the inclusioi)

of higher-order ones does not improve the outcome [8].
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In this paper, we present a novel technique based on

the formulation of a spectral-domain integral equation of re-

duced dimensionality for open dielectric waveguides of ar-

bitrary dimensions, which can easily be extended to three-

dimensional dielectric structures. This technique requires

separability of the Fourier transform of the Green’s func-

tion of the structure with respect to the source and obser-

vation coordinates outside the source region. Two vector

spectral unknowns are introduced in view of the angular

spectrum decomposition of the Green’s function. Then us-

ing the higher-order boundary conditions on the surface of

the dielectric region, coupled integral equations are derived

which relate these uknowns through spectral-domain modi-

fied Green’s functions.

In the following, first the general methodology is de-

veloped and then it is applied to to a rectangular dielec-

tric slab waveguide as an example. The resulting spectral-

domain integral equation is solved using the method of mo-

ments in conjunction with Galerkin’s testing. Due to the

nature of the spectral unknowns, an entire-domain basis con-

sisting of Hermite-Gaussian orthogonal functions is utilized.

Finally, numerical results are disussed and compared with

other met hods.

II. Theory

In this section, we present the spectral-domain approach

for a general class of dielectric waveguides. The geometry

of such a waveguide, shown in Fig. 1, consists of a dielec-

tric region of rectangular cross section which rests upon a

planar layered background structure. An equivalent volume

polarization current can be defined as

{

jkoYo(e,– l) E(z, y), \ r 1< a, I y 1< b

Jp(z, y) = (1)
o, elsewhere

where k. and YO are the free-space propagation constant and

characteristic admittance, respectively, e, is the relative per-

mittivity of the dielectric region and E is the electric field

inside this region. The uniformity of the structure along the

x-axis prompts the use of the Fourier transform with respect

1993 IEEE MTT-S Digest m



to the spatial variable x. The Fourier transform of the radi-

ated electric field is then given by

‘(kZ, Y) = l; ‘e(ka, Y 1 Y’). ~p(k., Y’)dy’ (2)

z
where Ge (IcC, y I y’) and ~P ( kz, y’) are the Fourier transforms

of the dyadic Green’s function of the background structure

and the polarization current, respectively.

For a large class of planar, layered substrate structures,

the spectral-domain dyadic Green’s function can be sepa-

rated with respect to y and y’ outside the source region, i.e.,

I y 1> b. For the geometries of the type shown in Fig.1, the

Fourier transform of the Green’s function is in the following

form:

Ge(kc, y I y’) = ~~(kz, g)e7’g’ + ~~(kx, y)e-~’” (3)

where-y? = k~+k~–k~, k.is the propagation constant of the

waveguide along the z-axis, the + sign indicates y > b, and

the – sign indicates y < –b. At this point, we define two

vector, spectral, planar unknowns, which have the dimen-

sionality of surface currents, by the following line integrals:

&1,2(W =
!

(4)b e--n(@Y’)jp(kz, y’)dy’

-b

In view of (4), equation(2) reduces to the form:

1~(kc, Y)= ~;(kz, ~).~sl(k=) +~~(k~, y).~sz(k=) e7’b (5)

The field inside the dielectric region can then be ex-

panded in a Taylor series about its upper or lower boundaries

in the following way:

- (y+ b)” dnfi(ks, *b)
E(kz, y) = ~ --J-

n=o . t)y”
(6)

The higher-order derivatives in (6) can be related to the elec-

tric field and its derivatives just outside the boundaries of the

dielectric region using the higher-order boundary conditions.

In the dyadic form, one can write

O%(k., *b+)

ay”
= ~. . I??(k., +b+) (7)

where Z. is a tensor whose elements are functions of k% and

k,. Finally, in view of (l),(6) and (7), (4) reduces to the

following coupled linear equations:

~sl(ko) = ~~ [G;,(kc I f).~sl(~) + %(kz 10~s2(0]W

(8)

~sz(kx) = ~~ ~;,(km I ‘$)&l(() + &#-s I <).%2(<)] d<

where G~ (k=

tions:

G:j(km I @ =

() are modified spectral-domain Green’s func-

K ~(–l)nln(~l)~n. ~~(~, b) et7~-71)bS(kz, ~)
.=0

(9)

G~l(km I ~) = K ~ In(yl)~n . ~~((, –b) e(’~-71)bS(k&, ~)
n=o

with 1 = 1,2, K = jkoYo(e, — 1), ln(~l) given by a simple

integral which can be evaluated analytically:

and S(km, ~) = sin[(kc – (’)a]/[~(kZ – ~)].

It should be noted that due to the rigor-of the a?alysis,

equations (8) yield exact relations between J~l and J~2. In

the case of a structure with infinite extent along the x-axis,

these equations reduce to the exact eigenvalue equations.

Now in order to examine the validity of the general tech-

nique presented above, a simple geometry is considered which

consists of a rectangular dielectric slab waveguide of width

2a and thickness 2b immersed in the free space. In this case,

the Green’s function of the background structure is that of

the free space, while the symmetry of the problem along the

y-axis d~couples the two equations for the two planar un-

knowns J,l z. However, both of the two equations have the

same eigen;alues and as a result, only one of them is suffi-

cient for the solution of the eigenvalue problem which is in

the following form:

i.(kc) = ~: G’(km If). ~Jrf)d~ (lo)

Note that in this case, the tensor ~., introduced above in

conjunction with the higher-order boundary conditions, re-

duces to the following simple form:

()

1 00

c2m = -#’ o 1/6, o

001

and

(

3% ~k.(1 – lie,) O

Zzm+l = #“ o +71 o

0 jk.(1 – l/e,) +~1 )

for even and odd orders, respectively, and V; = k:+ kj – .Gk~,

Carrying out the infinite summations using known expan-

sions, closed-form expressions for the modified Green’s func-

tion are obtained. Similar simplifications apply to the more

general problem of Fig. 1.
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III. Numerical Results and Discussion

The integral equation (10) is solved numerically by use of

the method of moments in the spectral domain. The choice

of the basis functions is dictated by the inverse Fourier trans-

form of ~~(km), shown in Fig.2, which corresponds to a uni-

form polarization current over ] z 1< a, I g 1< b, with the typ-

ical values of 2b = 0.3578A0,afb = 4, and k. = 1.26ko. Con-

sidering the variation of J~ (z) in the space domain, Hermit e-

Gaussian functions are chosen as an expansion basis. These

functions are given by

c&(z) = e-+(%)’ H.(5) (11)

where .&(z) are the Hermite polynomials and Z. is a pa-

rameter. The Hermite-Gaussian functions have the interest-

ing property that their Fourier transforms are also Hermite-

Gaussian of the same order and they forma complete orthog-

onal system for square-integrable functions over (–m, cm).

Thus, the spectral planar unknowns defined previously can

be approximated by the following sum:

N

~.i(k=)= ~ a~~~i~(kc), i=x, y,z (12)
n=o

It turns out that the optimum value of Zo, which ~inimizes

the mean-square error for the approximation of J,(kZ), is

a function of a, b ( the bounds of the dielectric region), N

and k., but it is not sensitive to the functional form of the

polarization current. Therefore, given N and k., one can de-

termine the value of Z. from an examination of a polarization

current with uniform dktribution over 1 z I< a, I y 1< b.

In view of (13) and with the use of Galerkin’s testing,

equation (10) reduces to the following matrix equation:

SK...%=o, m= O,. ... N (13)
n=o

where

with i,j=x, y,z, m,n= O, ..., N, 6’s being the Kronecker

delta, and % = .f& &m(k~)&~(k~)dk=. The propagation

constant k= of the waveguide is found by solving the equation

det[K] = O.

The spectral-domain technique presented above has been

applied to slab waveguides with a variety of parameters.

Figs. 3 and 4 show the variation of the normalized prop-

agation constants for the dominant Efl and Efl modes of a

rectangular dielectric slab, with e, = 2.25 and R = a/b =

4, versus the normalized guide thickness defined as B =

4(b/Ao) ~, respectively. The numerical results have

been compared with those of Marcatili’s approximate method

[1]. Excellent agreement is observed for large waveguide di-

mensions. However, as the dimensions of the dielectric slab

shrink, Marcat ili’s approximate ion begins to fail as expected,

while this technique yields accurate solutions. The use of

the Hermite-Gaussian functions provides satisfactory results

with only a few basis functions as opposed to other numer-

ical methods which require fine discretization of the guide

cross section. Fig.5 shows the convergence of the eigenvalues

for the dominant modes versus the number of basis func-

tions. Additional results including higher-order modes and

slabs of different dimensions and dielectric constants will be

presented and discussed.

IV. Conclusion

We have developed a general spectral-domain technique

which reduces the dimensionality of the space-domain inte-

gral equation for a large class of open dielectric waveguides.

This technique has the merit of easy extension to three-

dimensional structures. As an example, a simple rectangular

slab guide was considered and the corresponding spectral-

domain modified Green’s function was derived. To solve the

resulting equations, the method of moments has been em-

ployed in the spectral domain using entire-domain Hermite-

Gaussian functions. The results show good agreement with

other methods, and only a few basis functions are adequate

to achieve quick convergence.
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Fig. 1. Ridge dielectric waveguide,
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Fig. 2. Iaverse Fourier transform of .f,(k=) corresponding to a uniform

volume polarization current.
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Fig. 3. Normalized propagation constant (k, /ko) for the dominant E;l

mode as a function of normalized thickness B . 4(b/~) ~.
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Fig. 4. Normalized propagation constant (k,/~) for the dominant E~l

mode as a function of normalized thickness B . 4(b/Ao)S.
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Fig. 5. Convergence of nc.rmalked propagation mnstant vs. the

number of bask fuoctions.


